sjquant llm bridge mcp
by sjquant
A model-agnostic Message Control Protocol (MCP) server that enables seamless integration with various Large Language Models (LLMs) like GPT, DeepSeek, Claude, and more.
What is sjquant llm bridge mcp
LLM Bridge MCP
LLM Bridge MCP allows AI agents to interact with multiple large language models through a standardized interface. It leverages the Message Control Protocol (MCP) to provide seamless access to different LLM providers, making it easy to switch between models or use multiple models in the same application.
Features
- Unified interface to multiple LLM providers:
- OpenAI (GPT models)
- Anthropic (Claude models)
- Google (Gemini models)
- DeepSeek
- ...
- Built with Pydantic AI for type safety and validation
- Supports customizable parameters like temperature and max tokens
- Provides usage tracking and metrics
Tools
The server implements the following tool:
run_llm(
prompt: str,
model_name: KnownModelName = "openai:gpt-4o-mini",
temperature: float = 0.7,
max_tokens: int = 8192,
system_prompt: str = "",
) -> LLMResponse
prompt
: The text prompt to send to the LLMmodel_name
: Specific model to use (default: "openai:gpt-4o-mini")temperature
: Controls randomness (0.0 to 1.0)max_tokens
: Maximum number of tokens to generatesystem_prompt
: Optional system prompt to guide the model's behavior
Installation
Installing via Smithery
To install llm-bridge-mcp for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @sjquant/llm-bridge-mcp --client claude
Manual Installation
- Clone the repository:
git clone https://github.com/yourusername/llm-bridge-mcp.git
cd llm-bridge-mcp
- Install uv (if not already installed):
# On macOS
brew install uv
# On Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# On Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
Configuration
Create a .env
file in the root directory with your API keys:
OPENAI_API_KEY=your_openai_api_key
ANTHROPIC_API_KEY=your_anthropic_api_key
GOOGLE_API_KEY=your_google_api_key
DEEPSEEK_API_KEY=your_deepseek_api_key
Usage
Using with Claude Desktop or Cursor
Add a server entry to your Claude Desktop configuration file or .cursor/mcp.json
:
"mcpServers": {
"llm-bridge": {
"command": "uvx",
"args": [
"llm-bridge-mcp"
],
"env": {
"OPENAI_API_KEY": "your_openai_api_key",
"ANTHROPIC_API_KEY": "your_anthropic_api_key",
"GOOGLE_API_KEY": "your_google_api_key",
"DEEPSEEK_API_KEY": "your_deepseek_api_key"
}
}
}
Troubleshooting
Common Issues
1. "spawn uvx ENOENT" Error
This error occurs when the system cannot find the uvx
executable in your PATH. To resolve this:
Solution: Use the full path to uvx
Find the full path to your uvx executable:
# On macOS/Linux
which uvx
# On Windows
where.exe uvx
Then update your MCP server configuration to use the full path:
"mcpServers": {
"llm-bridge": {
"command": "/full/path/to/uvx", // Replace with your actual path
"args": [
"llm-bridge-mcp"
],
"env": {
// ... your environment variables
}
}
}
License
This project is licensed under the MIT License - see the LICENSE file for details.
Leave a Comment
Frequently Asked Questions
What is MCP?
MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.
What are MCP Servers?
MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.
How do MCP Servers work?
MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.
Are MCP Servers secure?
Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.
Related MCP Servers
chrisdoc hevy mcp
sylphlab pdf reader mcp
An MCP server built with Node.js/TypeScript that allows AI agents to securely read PDF files (local or URL) and extract text, metadata, or page counts. Uses pdf-parse.
aashari mcp server atlassian bitbucket
Node.js/TypeScript MCP server for Atlassian Bitbucket. Enables AI systems (LLMs) to interact with workspaces, repositories, and pull requests via tools (list, get, comment, search). Connects AI directly to version control workflows through the standard MCP interface.
aashari mcp server atlassian confluence
Node.js/TypeScript MCP server for Atlassian Confluence. Provides tools enabling AI systems (LLMs) to list/get spaces & pages (content formatted as Markdown) and search via CQL. Connects AI seamlessly to Confluence knowledge bases using the standard MCP interface.
prisma prisma
Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB
Zzzccs123 mcp sentry
mcp sentry for typescript sdk
zhuzhoulin dify mcp server
zhongmingyuan mcp my mac
zhixiaoqiang desktop image manager mcp
MCP 服务器,用于管理桌面图片、查看详情、压缩、移动等(完全让Trae实现)
zhixiaoqiang antd components mcp
An MCP service for Ant Design components query | 一个减少 Ant Design 组件代码生成幻觉的 MCP 服务,包含系统提示词、组件文档、API 文档、代码示例和更新日志查询
Submit Your MCP Server
Share your MCP server with the community
Submit Now