sylphlab pdf reader mcp
by sylphxltd
An MCP server built with Node.js/TypeScript that allows AI agents to securely read PDF files (local or URL) and extract text, metadata, or page counts. Uses pdf-parse.
What is sylphlab pdf reader mcp
PDF Reader MCP Server (@sylphlab/pdf-reader-mcp)
Empower your AI agents (like Cline) with the ability to securely read and extract information (text, metadata, page count) from PDF files within your project context using a single, flexible tool.
Installation
Using npm (Recommended)
Install as a dependency in your MCP host environment or project:
pnpm add @sylphlab/pdf-reader-mcp # Or npm install / yarn add
Configure your MCP host (e.g., mcp_settings.json
) to use npx
:
{
"mcpServers": {
"pdf-reader-mcp": {
"command": "npx",
"args": ["@sylphlab/pdf-reader-mcp"],
"name": "PDF Reader (npx)"
}
}
}
(Ensure the host sets the correct cwd
for the target project)
Using Docker
Pull the image:
docker pull sylphlab/pdf-reader-mcp:latest
Configure your MCP host to run the container, mounting your project directory to /app
:
{
"mcpServers": {
"pdf-reader-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-v",
"/path/to/your/project:/app", // Or use "$PWD:/app", "%CD%:/app", etc.
"sylphlab/pdf-reader-mcp:latest"
],
"name": "PDF Reader (Docker)"
}
}
}
Local Build (For Development)
- Clone:
git clone https://github.com/sylphlab/pdf-reader-mcp.git
- Install:
cd pdf-reader-mcp && pnpm install
- Build:
pnpm run build
- Configure MCP Host:
(Ensure the host sets the correct{ "mcpServers": { "pdf-reader-mcp": { "command": "node", "args": ["/path/to/cloned/repo/pdf-reader-mcp/build/index.js"], "name": "PDF Reader (Local Build)" } } }
cwd
for the target project)
Quick Start
Assuming the server is running and configured in your MCP host:
MCP Request (Get metadata and page 2 text from a local PDF):
{
"tool_name": "read_pdf",
"arguments": {
"sources": [
{
"path": "./documents/my_report.pdf",
"pages": [2]
}
],
"include_metadata": true,
"include_page_count": false, // Default is true, explicitly false here
"include_full_text": false // Ignored because 'pages' is specified
}
}
Expected Response Snippet:
{
"results": [
{
"source": "./documents/my_report.pdf",
"success": true,
"data": {
"page_texts": [
{ "page": 2, "text": "Text content from page 2..." }
],
"info": { ... },
"metadata": { ... }
// num_pages not included as requested
}
}
]
}
Why Choose This Project?
- 🛡️ Secure: Confines file access strictly to the project root directory.
- 🌐 Flexible: Handles both local relative paths and public URLs.
- 🧩 Consolidated: A single
read_pdf
tool serves multiple extraction needs (full text, specific pages, metadata, page count). - ⚙️ Structured Output: Returns data in a predictable JSON format, easy for agents to parse.
- 🚀 Easy Integration: Designed for seamless use within MCP environments via
npx
or Docker. - ✅ Robust: Uses
pdfjs-dist
for reliable parsing and Zod for input validation.
Performance Advantages
Initial benchmarks using Vitest on a sample PDF show efficient handling of various operations:
Scenario | Operations per Second (hz) | Relative Speed |
---|---|---|
Handle Non-Existent File | ~12,933 | Fastest |
Get Full Text | ~5,575 | |
Get Specific Page (Page 1) | ~5,329 | |
Get Specific Pages (Pages 1 & 2) | ~5,242 | |
Get Metadata & Page Count | ~4,912 | Slowest |
(Higher hz indicates better performance. Results may vary based on PDF complexity and environment.)
See the Performance Documentation for more details and future plans.
Features
- Read full text content from PDF files.
- Read text content from specific pages or page ranges.
- Read PDF metadata (author, title, creation date, etc.).
- Get the total page count of a PDF.
- Process multiple PDF sources (local paths or URLs) in a single request.
- Securely operates within the defined project root.
- Provides structured JSON output via MCP.
- Available via npm and Docker Hub.
Design Philosophy
The server prioritizes security through context confinement, efficiency via structured data transfer, and simplicity for easy integration into AI agent workflows. It aims for minimal dependencies, relying on the robust pdfjs-dist
library.
See the full Design Philosophy documentation.
Comparison with Other Solutions
Compared to direct file access (often infeasible) or generic filesystem tools, this server offers PDF-specific parsing capabilities. Unlike external CLI tools (e.g., pdftotext
), it provides a secure, integrated MCP interface with structured output, enhancing reliability and ease of use for AI agents.
See the full Comparison documentation.
Future Plans (Roadmap)
- Documentation:
- Finalize all documentation sections (Guide, API, Design, Comparison).
- Resolve TypeDoc issue and generate API documentation.
- Add more examples and advanced usage patterns.
- Implement PWA support and mobile optimization for the docs site.
- Add share buttons and growth metrics to the docs site.
- Benchmarking:
- Conduct comprehensive benchmarks with diverse PDF files (size, complexity).
- Measure memory usage.
- Compare URL vs. local file performance.
- Core Functionality:
- Explore potential optimizations for very large PDF files.
- Investigate options for extracting images or annotations (longer term).
- Testing:
- Increase test coverage towards 100% where practical.
- Add runtime tests once feasible.
Documentation
For detailed usage, API reference, and guides, please visit the Full Documentation Website (Link to be updated upon deployment).
Community & Support
- Found a bug or have a feature request? Please open an issue on GitHub Issues.
- Want to contribute? We welcome contributions! Please see CONTRIBUTING.md.
- Star & Watch: If you find this project useful, please consider starring ⭐ and watching 👀 the repository on GitHub to show your support and stay updated!
License
This project is licensed under the MIT License.
Leave a Comment
Frequently Asked Questions
What is MCP?
MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.
What are MCP Servers?
MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.
How do MCP Servers work?
MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.
Are MCP Servers secure?
Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.
Related MCP Servers
chrisdoc hevy mcp
aashari mcp server atlassian bitbucket
Node.js/TypeScript MCP server for Atlassian Bitbucket. Enables AI systems (LLMs) to interact with workspaces, repositories, and pull requests via tools (list, get, comment, search). Connects AI directly to version control workflows through the standard MCP interface.
aashari mcp server atlassian confluence
Node.js/TypeScript MCP server for Atlassian Confluence. Provides tools enabling AI systems (LLMs) to list/get spaces & pages (content formatted as Markdown) and search via CQL. Connects AI seamlessly to Confluence knowledge bases using the standard MCP interface.
prisma prisma
Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB
Zzzccs123 mcp sentry
mcp sentry for typescript sdk
zhuzhoulin dify mcp server
zhongmingyuan mcp my mac
zhixiaoqiang desktop image manager mcp
MCP 服务器,用于管理桌面图片、查看详情、压缩、移动等(完全让Trae实现)
zhixiaoqiang antd components mcp
An MCP service for Ant Design components query | 一个减少 Ant Design 组件代码生成幻觉的 MCP 服务,包含系统提示词、组件文档、API 文档、代码示例和更新日志查询
yeonupark mcp soccer data
An MCP server that provides real-time football data based on the SoccerDataAPI.
Submit Your MCP Server
Share your MCP server with the community
Submit Now