A powerful Model Context Protocol server for LinkedIn interactions that enables AI assistants to search for jobs, generate resumes and cover letters, and manage job applications programmatically.

What is Rayyan9477 linkedin mcp

LinkedIn Model Context Protocol (MCP) Server

License: MIT

A powerful Model Context Protocol server for LinkedIn interactions that enables AI assistants to search for jobs, generate resumes and cover letters, and manage job applications programmatically.

Features

  • Authentication: Secure LinkedIn authentication with session management
  • Profile Management: Access and update LinkedIn profile information
  • Job Search: Search for jobs with flexible filtering options
  • Resume Generation: Create customized resumes from LinkedIn profiles
  • Cover Letter Generation: Generate tailored cover letters for specific job applications
  • Job Applications: Submit and track job applications

Architecture

This project implements the Model Context Protocol (MCP) specification, allowing AI assistants to interact with LinkedIn through standardized JSON-RPC style requests and responses.

Components:

  • MCP Handler: Routes requests to appropriate service handlers
  • API Modules: Specialized modules for LinkedIn interactions (auth, job search, profile, etc.)
  • Core Protocol: Defines request/response structures and data models
  • Utilities: Configuration management and helper functions

Installation

# Clone the repository
git clone https://github.com/yourusername/linkedin-mcp.git
cd linkedin-mcp

# Create and activate a virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

Configuration

Create a .env file in the project root with the following variables:

# LinkedIn Credentials
[email protected]
LINKEDIN_PASSWORD=your_password

# API Settings
OPENAI_API_KEY=your_openai_api_key
SESSION_DIR=sessions
DATA_DIR=data

Usage

Starting the Server

python server.py

Example MCP Requests

Authentication

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "linkedin.login",
  "params": {
    "username": "[email protected]",
    "password": "password123"
  }
}

Searching for Jobs

{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "linkedin.searchJobs",
  "params": {
    "filter": {
      "keywords": "software engineer",
      "location": "New York, NY",
      "distance": 25
    },
    "page": 1,
    "count": 20
  }
}

Generating a Resume

{
  "jsonrpc": "2.0",
  "id": 3,
  "method": "linkedin.generateResume",
  "params": {
    "profileId": "user123",
    "template": "standard",
    "format": "pdf"
  }
}

Available Methods

Method Description
linkedin.login Authenticate with LinkedIn
linkedin.logout End the current session
linkedin.checkSession Check if the current session is valid
linkedin.getFeed Get LinkedIn feed posts
linkedin.getProfile Get LinkedIn profile information
linkedin.getCompany Get company profile information
linkedin.searchJobs Search for jobs with filters
linkedin.getJobDetails Get detailed information about a job
linkedin.getRecommendedJobs Get job recommendations
linkedin.generateResume Generate a resume from a LinkedIn profile
linkedin.generateCoverLetter Generate a cover letter for a job application
linkedin.tailorResume Customize a resume for a specific job
linkedin.applyToJob Apply to a job
linkedin.getApplicationStatus Check application status
linkedin.getSavedJobs Get saved jobs
linkedin.saveJob Save a job for later

Development

Project Structure

linkedin-mcp/
โ”œโ”€โ”€ README.md
โ”œโ”€โ”€ requirements.txt
โ”œโ”€โ”€ server.py
โ”œโ”€โ”€ data/
โ”‚   โ”œโ”€โ”€ applications/
โ”‚   โ”œโ”€โ”€ companies/
โ”‚   โ”œโ”€โ”€ cover_letters/
โ”‚   โ”œโ”€โ”€ jobs/
โ”‚   โ”œโ”€โ”€ profiles/
โ”‚   โ””โ”€โ”€ resumes/
โ”œโ”€โ”€ linkedin_mcp/
โ”‚   โ”œโ”€โ”€ api/
โ”‚   โ”‚   โ”œโ”€โ”€ auth.py
โ”‚   โ”‚   โ”œโ”€โ”€ cover_letter_generator.py
โ”‚   โ”‚   โ”œโ”€โ”€ job_application.py
โ”‚   โ”‚   โ”œโ”€โ”€ job_search.py
โ”‚   โ”‚   โ”œโ”€โ”€ profile.py
โ”‚   โ”‚   โ””โ”€โ”€ resume_generator.py
โ”‚   โ”œโ”€โ”€ core/
โ”‚   โ”‚   โ”œโ”€โ”€ mcp_handler.py
โ”‚   โ”‚   โ””โ”€โ”€ protocol.py
โ”‚   โ””โ”€โ”€ utils/
โ”‚       โ””โ”€โ”€ config.py
โ”œโ”€โ”€ sessions/
โ””โ”€โ”€ templates/
    โ”œโ”€โ”€ cover_letter/
    โ”‚   โ””โ”€โ”€ standard.html
    โ””โ”€โ”€ resume/
        โ””โ”€โ”€ standard.html

Running Tests

pytest

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • LinkedIn API documentation
  • Model Context Protocol specification

Leave a Comment

Frequently Asked Questions

What is MCP?

MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.

What are MCP Servers?

MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.

How do MCP Servers work?

MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.

Are MCP Servers secure?

Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.

Related MCP Servers

Brave Search MCP avatar

Brave Search MCP

Integrate Brave Search capabilities into Claude through MCP. Enables real-time web searches with privacy-focused results and comprehensive web coverage.

searchapiofficial
chrisdoc hevy mcp avatar

chrisdoc hevy mcp

mcp
sylphlab pdf reader mcp avatar

sylphlab pdf reader mcp

An MCP server built with Node.js/TypeScript that allows AI agents to securely read PDF files (local or URL) and extract text, metadata, or page counts. Uses pdf-parse.

pdf-parsetypescriptnodejs
aashari mcp server atlassian bitbucket avatar

aashari mcp server atlassian bitbucket

Node.js/TypeScript MCP server for Atlassian Bitbucket. Enables AI systems (LLMs) to interact with workspaces, repositories, and pull requests via tools (list, get, comment, search). Connects AI directly to version control workflows through the standard MCP interface.

atlassianrepositorymcp
aashari mcp server atlassian confluence avatar

aashari mcp server atlassian confluence

Node.js/TypeScript MCP server for Atlassian Confluence. Provides tools enabling AI systems (LLMs) to list/get spaces & pages (content formatted as Markdown) and search via CQL. Connects AI seamlessly to Confluence knowledge bases using the standard MCP interface.

atlassianmcpconfluence
prisma prisma avatar

prisma prisma

Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB

cockroachdbgomcp
Zzzccs123 mcp sentry avatar

Zzzccs123 mcp sentry

mcp sentry for typescript sdk

mcptypescript
zhuzhoulin dify mcp server avatar

zhuzhoulin dify mcp server

mcp
zhongmingyuan mcp my mac avatar

zhongmingyuan mcp my mac

mcp
zhixiaoqiang desktop image manager mcp avatar

zhixiaoqiang desktop image manager mcp

MCP ๆœๅŠกๅ™จ๏ผŒ็”จไบŽ็ฎก็†ๆกŒ้ขๅ›พ็‰‡ใ€ๆŸฅ็œ‹่ฏฆๆƒ…ใ€ๅŽ‹็ผฉใ€็งปๅŠจ็ญ‰๏ผˆๅฎŒๅ…จ่ฎฉTraeๅฎž็Žฐ๏ผ‰

mcp

Submit Your MCP Server

Share your MCP server with the community

Submit Now