Deep Research MCP is an intelligent research assistant built on the Model Context Protocol (MCP) that performs comprehensive, multi-step research on any topic.
What is ameeralns DeepResearchMCP
DeepResearch MCP
!DeepResearch Logo
*
*
*
๐ Overview
DeepResearch MCP is a powerful research assistant built on the Model Context Protocol (MCP). It conducts intelligent, iterative research on any topic through web searches, analysis, and comprehensive report generation.
๐ Key Features
- Intelligent Topic Exploration - Automatically identifies knowledge gaps and generates focused search queries
- Comprehensive Content Extraction - Enhanced web scraping with improved content organization
- Structured Knowledge Processing - Preserves important information while managing token usage
- Scholarly Report Generation - Creates detailed, well-structured reports with executive summaries, analyses, and visualizations
- Complete Bibliography - Properly cites all sources with numbered references
- Adaptive Content Management - Automatically manages content to stay within token limits
- Error Resilience - Recovers from errors and generates partial reports when full processing isn't possible
๐ ๏ธ Architecture
โโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโ
โ โ โ โ โ โ
โ MCP Server Layer โโโโโโบโ Research Serviceโโโโโโบโ Search Service โ
โ (Tools & Prompts) โ โ (Session Mgmt) โ โ (Firecrawl) โ
โ โ โ โ โ โ
โโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโฌโโโโโโโโ โโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโ
โ โ
โ OpenAI Service โ
โ (Analysis/Rpt) โ
โ โ
โโโโโโโโโโโโโโโโโโโ
๐ป Installation
Prerequisites
- Node.js 18 or higher
- OpenAI API key
- Firecrawl API key
Setup Steps
-
Clone the repository
git clone <repository-url> cd deep-research-mcp
-
Install dependencies
npm install
-
Configure environment variables
cp .env.example .env
Edit the
.env
file and add your API keys:OPENAI_API_KEY=sk-your-openai-api-key FIRECRAWL_API_KEY=your-firecrawl-api-key
-
Build the project
npm run build
๐ Usage
Running the MCP Server
Start the server on stdio for MCP client connections:
npm start
Using the Example Client
Run research on a specific topic with a specified depth:
npm run client "Your research topic" 3
Parameters:
- First argument: Research topic or query
- Second argument: Research depth (number of iterations, default: 2)
- Third argument (optional): "complete" to use the complete-research tool (one-step process)
Example:
npm run client "the impact of climate change on coral reefs" 3 complete
Example Output
The DeepResearch MCP will produce a comprehensive report that includes:
- Executive Summary - Concise overview of the research findings
- Introduction - Context and importance of the research topic
- Methodology - Description of the research approach
- Comprehensive Analysis - Detailed examination of the topic
- Comparative Analysis - Visual comparison of key aspects
- Discussion - Interpretation of findings and implications
- Limitations - Constraints and gaps in the research
- Conclusion - Final insights and recommendations
- Bibliography - Complete list of sources with URLs
๐ง MCP Integration
Available MCP Resources
Resource Path | Description |
---|---|
research://state/{sessionId} |
Access the current state of a research session |
research://findings/{sessionId} |
Access the collected findings for a session |
Available MCP Tools
Tool Name | Description | Parameters |
---|---|---|
initialize-research |
Start a new research session | query : string, depth : number |
execute-research-step |
Execute the next research step | sessionId : string |
generate-report |
Create a final report | sessionId : string, timeout : number (optional) |
complete-research |
Execute the entire research process | query : string, depth : number, timeout : number (optional) |
๐ฅ๏ธ Claude Desktop Integration
DeepResearch MCP can be integrated with Claude Desktop to provide direct research capabilities to Claude.
Configuration Steps
-
Copy the sample configuration
cp claude_desktop_config_sample.json ~/path/to/claude/desktop/config/directory/claude_desktop_config.json
-
Edit the configuration file
Update the path to point to your installation of deep-research-mcp and add your API keys:
{ "mcpServers": { "deep-research": { "command": "node", "args": [ "/absolute/path/to/your/deep-research-mcp/dist/index.js" ], "env": { "FIRECRAWL_API_KEY": "your-firecrawler-api-key", "OPENAI_API_KEY": "your-openai-api-key" } } } }
-
Restart Claude Desktop
After saving the configuration, restart Claude Desktop for the changes to take effect.
-
Using with Claude Desktop
Now you can ask Claude to perform research using commands like:
Can you research the impact of climate change on coral reefs and provide a detailed report?
๐ Sample Client Code
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
async function main() {
// Connect to the server
const transport = new StdioClientTransport({
command: "node",
args: ["dist/index.js"]
});
const client = new Client({ name: "deep-research-client", version: "1.0.0" });
await client.connect(transport);
// Initialize research
const initResult = await client.callTool({
name: "initialize-research",
arguments: {
query: "The impact of artificial intelligence on healthcare",
depth: 3
}
});
// Parse the response to get sessionId
const { sessionId } = JSON.parse(initResult.content[0].text);
// Execute steps until complete
let currentDepth = 0;
while (currentDepth < 3) {
const stepResult = await client.callTool({
name: "execute-research-step",
arguments: { sessionId }
});
const stepInfo = JSON.parse(stepResult.content[0].text);
currentDepth = stepInfo.currentDepth;
console.log(`Completed step ${stepInfo.currentDepth}/${stepInfo.maxDepth}`);
}
// Generate final report with timeout
const report = await client.callTool({
name: "generate-report",
arguments: {
sessionId,
timeout: 180000 // 3 minutes timeout
}
});
console.log("Final Report:");
console.log(report.content[0].text);
}
main().catch(console.error);
๐ Troubleshooting
Common Issues
-
Token Limit Exceeded: For very large research topics, you may encounter OpenAI token limit errors. Try:
- Reducing the research depth
- Using more specific queries
- Breaking complex topics into smaller sub-topics
-
Timeout Errors: For complex research, the process may time out. Solutions:
- Increase the timeout parameters in tool calls
- Use the
complete-research
tool with a longer timeout - Process research in smaller chunks
-
API Rate Limits: If you encounter rate limit errors from OpenAI or Firecrawl:
- Implement a delay between research steps
- Use an API key with higher rate limits
- Retry with exponential backoff
๐ License
ISC
๐ Acknowledgements
- Built with Model Context Protocol
- Powered by OpenAI and Firecrawl
Leave a Comment
Frequently Asked Questions
What is MCP?
MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.
What are MCP Servers?
MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.
How do MCP Servers work?
MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.
Are MCP Servers secure?
Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.
Related MCP Servers
Brave Search MCP
Integrate Brave Search capabilities into Claude through MCP. Enables real-time web searches with privacy-focused results and comprehensive web coverage.
chrisdoc hevy mcp
sylphlab pdf reader mcp
An MCP server built with Node.js/TypeScript that allows AI agents to securely read PDF files (local or URL) and extract text, metadata, or page counts. Uses pdf-parse.
aashari mcp server atlassian bitbucket
Node.js/TypeScript MCP server for Atlassian Bitbucket. Enables AI systems (LLMs) to interact with workspaces, repositories, and pull requests via tools (list, get, comment, search). Connects AI directly to version control workflows through the standard MCP interface.
aashari mcp server atlassian confluence
Node.js/TypeScript MCP server for Atlassian Confluence. Provides tools enabling AI systems (LLMs) to list/get spaces & pages (content formatted as Markdown) and search via CQL. Connects AI seamlessly to Confluence knowledge bases using the standard MCP interface.
prisma prisma
Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB
Zzzccs123 mcp sentry
mcp sentry for typescript sdk
zhuzhoulin dify mcp server
zhongmingyuan mcp my mac
zhixiaoqiang desktop image manager mcp
MCP ๆๅกๅจ๏ผ็จไบ็ฎก็ๆก้ขๅพ็ใๆฅ็่ฏฆๆ ใๅ็ผฉใ็งปๅจ็ญ๏ผๅฎๅ จ่ฎฉTraeๅฎ็ฐ๏ผ
Submit Your MCP Server
Share your MCP server with the community
Submit Now