ocean zhc dolphinscheduler mcp

ocean zhc dolphinscheduler mcp avatar

by ocean-zhc

A Model Context Protocol (MCP) server for Apache Dolphinscheduler. This provides access to your Apache Dolphinshcheduler RESTful API V1 instance and the surrounding ecosystem.

What is ocean zhc dolphinscheduler mcp

DolphinScheduler MCP Server

A Model Context Protocol (MCP) server for Apache DolphinScheduler, allowing AI agents to interact with DolphinScheduler through a standardized protocol.

Overview

DolphinScheduler MCP provides a FastMCP-based server that exposes DolphinScheduler's REST API as a collection of tools that can be used by AI agents. The server acts as a bridge between AI models and DolphinScheduler, enabling AI-driven workflow management.

Features

  • Full API coverage of DolphinScheduler functionality
  • Standardized tool interfaces following the Model Context Protocol
  • Easy configuration through environment variables or command-line arguments
  • Comprehensive tool documentation

Installation

pip install dolphinscheduler-mcp

Configuration

Environment Variables

  • DOLPHINSCHEDULER_API_URL: URL for the DolphinScheduler API (default: http://localhost:12345/dolphinscheduler)
  • DOLPHINSCHEDULER_API_KEY: API token for authentication with the DolphinScheduler API
  • DOLPHINSCHEDULER_MCP_HOST: Host to bind the MCP server (default: 0.0.0.0)
  • DOLPHINSCHEDULER_MCP_PORT: Port to bind the MCP server (default: 8089)
  • DOLPHINSCHEDULER_MCP_LOG_LEVEL: Logging level (default: INFO)

Usage

Command Line

Start the server using the command-line interface:

ds-mcp --host 0.0.0.0 --port 8089

Python API

from dolphinscheduler_mcp.server import run_server

# Start the server
run_server(host="0.0.0.0", port=8089)

Available Tools

The DolphinScheduler MCP Server provides tools for:

  • Project Management
  • Process Definition Management
  • Process Instance Management
  • Task Definition Management
  • Scheduling Management
  • Resource Management
  • Data Source Management
  • Alert Group Management
  • Alert Plugin Management
  • Worker Group Management
  • Tenant Management
  • User Management
  • System Status Monitoring

Example Client Usage

from mcp_client import MCPClient

# Connect to the MCP server
client = MCPClient("http://localhost:8089/mcp")

# Get a list of projects
response = await client.invoke_tool("get-project-list")

# Create a new project
response = await client.invoke_tool(
    "create-project", 
    {"name": "My AI Project", "description": "Project created by AI"}
)

License

Apache License 2.0

Leave a Comment

Frequently Asked Questions

What is MCP?

MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.

What are MCP Servers?

MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.

How do MCP Servers work?

MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.

Are MCP Servers secure?

Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.

Submit Your MCP Server

Share your MCP server with the community

Submit Now