NvkAnirudh YT to LinkedIn MCP Server

NvkAnirudh YT to LinkedIn MCP Server avatar

by NvkAnirudh

What is NvkAnirudh YT to LinkedIn MCP Server

YouTube to LinkedIn MCP Server

A Model Context Protocol (MCP) server that automates generating LinkedIn post drafts from YouTube videos. This server provides high-quality, editable content drafts based on YouTube video transcripts.

Features

  • YouTube Transcript Extraction: Extract transcripts from YouTube videos using video URLs
  • Transcript Summarization: Generate concise summaries of video content using OpenAI GPT
  • LinkedIn Post Generation: Create professional LinkedIn post drafts with customizable tone and style
  • Modular API Design: Clean FastAPI implementation with well-defined endpoints
  • Containerized Deployment: Ready for deployment on Smithery

Setup Instructions

Prerequisites

  • Python 3.8+
  • Docker (for containerized deployment)
  • OpenAI API Key
  • YouTube Data API Key (optional, but recommended for better metadata)

Local Development

  1. Clone the repository:

    git clone <repository-url>
    cd yt-to-linkedin
    
  2. Create a virtual environment and install dependencies:

    python -m venv venv
    source venv`/bin/activate`  # On Windows: venv\Scripts\activate
    pip install -r requirements.txt
    
  3. Create a .env file in the project root with your API keys:

    OPENAI_API_KEY=your_openai_api_key
    YOUTUBE_API_KEY=your_youtube_api_key
    
  4. Run the application:

    uvicorn app.main:app --reload
    
  5. Access the API documentation at http://localhost:8000/docs

Docker Deployment

  1. Build the Docker image:

    docker build -t yt-to-linkedin-mcp .
    
  2. Run the container:

    docker run -p 8000:8000 --env-file .env yt-to-linkedin-mcp
    

Smithery Deployment

  1. Ensure you have the Smithery CLI installed and configured.

  2. Deploy to Smithery:

    smithery deploy
    

API Endpoints

1. Transcript Extraction

Endpoint: /api/v1/transcript
Method: POST
Description: Extract transcript from a YouTube video

Request Body:

{
  "youtube_url": "https://www.youtube.com/watch?v=VIDEO_ID",
  "language": "en",
  "youtube_api_key": "your_youtube_api_key"  // Optional, provide your own YouTube API key
}

Response:

{
  "video_id": "VIDEO_ID",
  "video_title": "Video Title",
  "transcript": "Full transcript text...",
  "language": "en",
  "duration_seconds": 600,
  "channel_name": "Channel Name",
  "error": null
}

2. Transcript Summarization

Endpoint: /api/v1/summarize
Method: POST
Description: Generate a summary from a video transcript

Request Body:

{
  "transcript": "Video transcript text...",
  "video_title": "Video Title",
  "tone": "professional",
  "audience": "general",
  "max_length": 250,
  "min_length": 150,
  "openai_api_key": "your_openai_api_key"  // Optional, provide your own OpenAI API key
}

Response:

{
  "summary": "Generated summary text...",
  "word_count": 200,
  "key_points": [
    "Key point 1",
    "Key point 2",
    "Key point 3"
  ]
}

3. LinkedIn Post Generation

Endpoint: /api/v1/generate-post
Method: POST
Description: Generate a LinkedIn post from a video summary

Request Body:

{
  "summary": "Video summary text...",
  "video_title": "Video Title",
  "video_url": "https://www.youtube.com/watch?v=VIDEO_ID",
  "speaker_name": "Speaker Name",
  "hashtags": ["ai", "machinelearning"],
  "tone": "professional",
  "voice": "first_person",
  "audience": "technical",
  "include_call_to_action": true,
  "max_length": 1200,
  "openai_api_key": "your_openai_api_key"  // Optional, provide your own OpenAI API key
}

Response:

{
  "post_content": "Generated LinkedIn post content...",
  "character_count": 800,
  "estimated_read_time": "About 1 minute",
  "hashtags_used": ["#ai", "#machinelearning"]
}

4. Output Formatting

Endpoint: /api/v1/output
Method: POST
Description: Format the LinkedIn post for output

Request Body:

{
  "post_content": "LinkedIn post content...",
  "format": "json"
}

Response:

{
  "content": {
    "post_content": "LinkedIn post content...",
    "character_count": 800
  },
  "format": "json"
}

Environment Variables

Variable Description Required
OPENAI_API_KEY OpenAI API key for summarization and post generation No (can be provided in requests)
YOUTUBE_API_KEY YouTube Data API key for fetching video metadata No (can be provided in requests)
PORT Port to run the server on (default: 8000) No

Note: While environment variables for API keys are optional (as they can be provided in each request), it's recommended to set them for local development and testing. When deploying to Smithery, users will need to provide their own API keys in the requests.

License

MIT

Leave a Comment

Frequently Asked Questions

What is MCP?

MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.

What are MCP Servers?

MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.

How do MCP Servers work?

MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.

Are MCP Servers secure?

Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.

Related MCP Servers

chrisdoc hevy mcp avatar

chrisdoc hevy mcp

mcp
sylphlab pdf reader mcp avatar

sylphlab pdf reader mcp

An MCP server built with Node.js/TypeScript that allows AI agents to securely read PDF files (local or URL) and extract text, metadata, or page counts. Uses pdf-parse.

pdf-parsetypescriptnodejs
aashari mcp server atlassian bitbucket avatar

aashari mcp server atlassian bitbucket

Node.js/TypeScript MCP server for Atlassian Bitbucket. Enables AI systems (LLMs) to interact with workspaces, repositories, and pull requests via tools (list, get, comment, search). Connects AI directly to version control workflows through the standard MCP interface.

atlassianrepositorymcp
aashari mcp server atlassian confluence avatar

aashari mcp server atlassian confluence

Node.js/TypeScript MCP server for Atlassian Confluence. Provides tools enabling AI systems (LLMs) to list/get spaces & pages (content formatted as Markdown) and search via CQL. Connects AI seamlessly to Confluence knowledge bases using the standard MCP interface.

atlassianmcpconfluence
prisma prisma avatar

prisma prisma

Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB

cockroachdbgomcp
Zzzccs123 mcp sentry avatar

Zzzccs123 mcp sentry

mcp sentry for typescript sdk

mcptypescript
zhuzhoulin dify mcp server avatar

zhuzhoulin dify mcp server

mcp
zhongmingyuan mcp my mac avatar

zhongmingyuan mcp my mac

mcp
zhixiaoqiang desktop image manager mcp avatar

zhixiaoqiang desktop image manager mcp

MCP 服务器,用于管理桌面图片、查看详情、压缩、移动等(完全让Trae实现)

mcp
zhixiaoqiang antd components mcp avatar

zhixiaoqiang antd components mcp

An MCP service for Ant Design components query | 一个减少 Ant Design 组件代码生成幻觉的 MCP 服务,包含系统提示词、组件文档、API 文档、代码示例和更新日志查询

designantdapi

Submit Your MCP Server

Share your MCP server with the community

Submit Now