monteslu vibe eyes

monteslu vibe eyes avatar

by monteslu

description: "An MCP server that enables LLMs to 'see' what's happening in browser-based games and applications through vectorized canvas visualization and debug information.

What is monteslu vibe eyes

Vibe-Eyes

An MCP server that enables LLMs to "see" what's happening in browser-based games and applications through vectorized canvas visualization and debug information.

Vibe-Eyes uses a client-server architecture where a lightweight browser client captures canvas content and debug information, sends it to a Node.js server via WebSockets, which then vectorizes the images into compact SVG representations and makes them available to LLMs through the Model Context Protocol (MCP).

flowchart LR
    A["Browser Game/App<br/>(Canvas + JavaScript)"] -->|"Captures"| B["Vibe-Eyes Client<br/>(vibe-eyes-client)"]
    B -->|"WebSocket<br/>(CORS-free)"| C["Socket.IO Server"]
    
    subgraph server["Vibe-Eyes Server (mcp.js)"]
        C -->|"Process"| D["Vectorization<br/>(vectorizer.js)"]
        C -->|"Store"| E["Debug Data<br/>(logs, errors, exceptions)"]
        D -->|"Rough SVG"| F["MCP Tool: getGameDebug()"]
        E --> F
    end
    
    F -->|"SVG + Debug Info"| G["Claude/LLM<br/>(MCP Client)"]
    G -->|"Debugging<br/>Assistance"| A
    
    classDef default color:#000,font-weight:bold
    classDef edgeLabel color:#333,font-size:12px
    
    style A fill:#c0e0ff,stroke:#000,stroke-width:2px
    style B fill:#ffe0a0,stroke:#000,stroke-width:2px
    style C fill:#a0d0ff,stroke:#000,stroke-width:2px
    style D fill:#b0e0a0,stroke:#000,stroke-width:2px
    style E fill:#ffb0b0,stroke:#000,stroke-width:2px
    style F fill:#d0b0ff,stroke:#000,stroke-width:2px
    style G fill:#ffb0d0,stroke:#000,stroke-width:2px
    style server fill:#f0f0f0,stroke:#666,stroke-width:1px,stroke-dasharray: 5 5,color:#000

Note: This project is experimental and designed to enhance "vibe coding" sessions with LLMs by providing visual context and rich debug information.

Video Explanation

*Vibe-Eyes Video Explanation*

Key Capabilities

  • Captures and vectorizes canvas elements from browser games
  • Collects console logs and errors in real-time
  • Catches unhandled exceptions with full stack traces
  • Makes the visual and debug information available to LLMs via MCP
  • Creates a seamless debugging experience for developers working with LLMs

How It Works

  1. A lightweight client runs in the browser game/application
  2. The client captures canvas snapshots, console logs/errors, and unhandled exceptions
  3. Data is sent to the Vibe-Eyes server via WebSocket (avoiding CORS issues)
  4. The server vectorizes the canvas images and stores them with the debug information
  5. LLMs connect via the Model Context Protocol to access the latest data
  6. LLMs can "see" what's happening and help debug issues with full context

Components

1. Vibe-Eyes MCP Server (mcp.js)

The core server that:

  • Receives canvas snapshots via Socket.IO
  • Vectorizes images to compact SVG representation (rough approximation)
  • Stores debug information (logs, errors, exceptions, timing)
  • Exposes the data via Model Context Protocol (MCP)
  • Provides HTTP endpoints for direct access
  • Processes images sequentially to manage resources

2. Browser Client

The browser client is available at vibe-eyes-client repository.

A lightweight browser integration that:

  • Finds canvas elements in the page
  • Captures canvas content as data URLs
  • Intercepts console logs and errors
  • Catches global unhandled exceptions with stack traces
  • Sends data to the Vibe-Eyes server via WebSockets
  • Minimizes performance impact on games
  • Supports explicit initialization to control when capturing starts

3. Vectorization Engine (vectorizer.js)

A high-quality SVG vectorization library that:

  • Converts raster images to vector SVGs
  • Optimizes SVGs for size and clarity
  • Preserves visual information while reducing data size

Getting Started

Installation

# Clone the repository
git clone https://github.com/monteslu/vibe-eyes.git
cd vibe-eyes

# Install dependencies
npm install

Using with LLM Agents

Register the MCP server with your AI agent:

# For Claude Code
claude mcp add

This enables Claude to use the Vibe-Eyes capabilities via MCP.

Integrating with Games/Applications

Add the client to your browser application by including the required scripts:

<!-- Include Socket.IO client -->
<script src="https://cdn.socket.io/4.7.4/socket.io.min.js"></script>

<!-- Include Vibe-Eyes client -->
<script src="https://cdn.jsdelivr.net/npm/vibe-eyes-client/dist/index.min.js"></script>

<!-- Initialize the client -->
<script>
  // Import the initialization function if using as module
  // import { initializeVibeEyes } from 'vibe-eyes-client';
  
  // Initialize with configuration
  const vibeEyes = initializeVibeEyes({
    // WebSocket URL to the Vibe-Eyes server
    serverUrl: 'ws://localhost:8869',
    // Capture interval in milliseconds
    captureDelay: 1000,
    // Start capturing automatically after connection
    autoCapture: true
  });
</script>

Using with Claude or Other LLMs

The MCP server exposes a tool for LLMs to access the latest visual and debug information via Model Context Protocol (MCP):

getGameDebug({ includeSvg: true/false })

The LLM will receive:

  • Recent console logs and errors from the application
  • Unhandled exceptions with full stack traces (if any occurred)
  • Vectorized SVG approximation of the canvas (if includeSvg is true)
  • Timing and correlation information to connect visual state with logs

This allows the LLM to "see" what's happening in the application and provide better assistance.

Example MCP Config (for Claude Code)

To access Vibe-Eyes from Claude:

{
  "name": "vibe-eyes",
  "url": "http://localhost:8869",
  "tools": [
    {
      "name": "getGameDebug",
      "description": "Retrieves the most recent canvas visualization and debug information from a browser game or application"
    }
  ]
}

How Vibe-Eyes Helps with "Vibe Coding"

Traditional "vibe coding" sessions require developers to manually take screenshots and describe what's happening in their application. Vibe-Eyes automates this process by:

  1. Providing Visual Context: LLMs can see the actual visual state of the game/app
  2. Correlating Visual and Code Issues: Console logs are paired with visual state
  3. Reducing Manual Work: No need to manually capture and upload screenshots
  4. Enabling Real-Time Debugging: LLMs can observe changes as they happen
  5. Optimizing Data Transfer: Vector representation is more compact than screenshots

Performance Considerations

  • The browser client is designed to minimize impact on application performance
  • Creating canvas data URLs can be CPU-intensive, so capturing frequency is configurable
  • WebSocket transport avoids CORS issues common in cross-domain setups
  • The server processes images sequentially to prevent overload
  • SVG vectorization balances visual accuracy with size optimization

Direct SVG Access

For applications that want to reuse the vectorized SVG output:

  1. WebSocket Response: The server includes the SVG directly in WebSocket responses:

    socket.on('debugCapture', (data, callback) => {
      // Capture and process...
      callback({
        success: true,
        id: "capture_123",
        svg: "<svg>...</svg>",  // Vectorized SVG 
        stats: { /* stats data */ }
      });
    });
    
  2. HTTP Endpoint: Access the latest capture via the /latest endpoint:

    fetch('http://localhost:8869/latest')
      .then(res => res.json())
      .then(data => {
        const svg = data.vectorized?.svg;
        // Use the SVG...
      });
    

API Reference

Browser Client

// Initialize the client
const vibeEyes = initializeVibeEyes({
  serverUrl: 'ws://localhost:8869',
  captureDelay: 1000, // ms between captures
  maxLogs: 10,        // Max console.log entries to store
  maxErrors: 10,      // Max console.error entries to store
  autoCapture: true   // Start capturing automatically
});

// Manual control
vibeEyes.startCaptureLoop(); // Start auto-capturing
vibeEyes.stopCaptureLoop();  // Stop auto-capturing
vibeEyes.captureAndSend();   // Trigger one capture immediately

// The server responds with:
// {
//   success: true,
//   id: "capture_1234567890",
//   processedAt: 1616161616161,
//   svg: "<svg>...</svg>",  // The vectorized SVG for direct use
//   stats: {
//     vectorizeTime: 120,
//     optimizeTime: 30,
//     originalSize: 50000,
//     finalSize: 15000,
//     sizeReduction: 70
//   }
// }

MCP Tool

// MCP tool available to LLMs
getGameDebug({
  includeSvg: true  // Whether to include SVG visualization
})

// Returns
{
  success: true,
  capture: {
    id: "capture_123456789",
    timestamp: 1616161616161,
    console_logs: [
      { timestamp: 1616161616000, data: ["Player position:", {x: 10, y: 20}] },
      // ...more logs
    ],
    console_errors: [
      // Any errors captured
    ],
    unhandled_exception: {
      timestamp: 1616161616100,
      message: "Uncaught SyntaxError: Unexpected token ';'",
      stack: "SyntaxError: Unexpected token ';'\n    at game.js:42:10\n...",
      type: "SyntaxError",
      source: "game.js",
      line: 42,
      column: 10
    },
    vectorized: {
      svg: "<svg>...</svg>",  // Only if includeSvg is true (rough approximation)
      imageType: "png",
      stats: {
        vectorizeTime: 120,
        optimizeTime: 30,
        originalSize: 50000,
        finalSize: 15000,
        sizeReduction: 70
      }
    }
  }
}

Standalone Vectorizer CLI

The project also includes a standalone CLI tool for vectorizing individual files:

# Install CLI globally
npm install -g vibe-eyes

# Use the CLI
vibe-eyes-vectorize input.png output.svg

# With options
vibe-eyes-vectorize photo.jpg --color-precision 10 --max-iterations 100

License

ISC

Leave a Comment

Frequently Asked Questions

What is MCP?

MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.

What are MCP Servers?

MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.

How do MCP Servers work?

MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.

Are MCP Servers secure?

Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.

Related MCP Servers

chrisdoc hevy mcp avatar

chrisdoc hevy mcp

mcp
sylphlab pdf reader mcp avatar

sylphlab pdf reader mcp

An MCP server built with Node.js/TypeScript that allows AI agents to securely read PDF files (local or URL) and extract text, metadata, or page counts. Uses pdf-parse.

pdf-parsetypescriptnodejs
aashari mcp server atlassian bitbucket avatar

aashari mcp server atlassian bitbucket

Node.js/TypeScript MCP server for Atlassian Bitbucket. Enables AI systems (LLMs) to interact with workspaces, repositories, and pull requests via tools (list, get, comment, search). Connects AI directly to version control workflows through the standard MCP interface.

atlassianrepositorymcp
aashari mcp server atlassian confluence avatar

aashari mcp server atlassian confluence

Node.js/TypeScript MCP server for Atlassian Confluence. Provides tools enabling AI systems (LLMs) to list/get spaces & pages (content formatted as Markdown) and search via CQL. Connects AI seamlessly to Confluence knowledge bases using the standard MCP interface.

atlassianmcpconfluence
prisma prisma avatar

prisma prisma

Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB

cockroachdbgomcp
Zzzccs123 mcp sentry avatar

Zzzccs123 mcp sentry

mcp sentry for typescript sdk

mcptypescript
zhuzhoulin dify mcp server avatar

zhuzhoulin dify mcp server

mcp
zhongmingyuan mcp my mac avatar

zhongmingyuan mcp my mac

mcp
zhixiaoqiang desktop image manager mcp avatar

zhixiaoqiang desktop image manager mcp

MCP 服务器,用于管理桌面图片、查看详情、压缩、移动等(完全让Trae实现)

mcp
zhixiaoqiang antd components mcp avatar

zhixiaoqiang antd components mcp

An MCP service for Ant Design components query | 一个减少 Ant Design 组件代码生成幻觉的 MCP 服务,包含系统提示词、组件文档、API 文档、代码示例和更新日志查询

designantdapi

Submit Your MCP Server

Share your MCP server with the community

Submit Now