adam paterson mcp crew ai

adam paterson mcp crew ai avatar

by adam-paterson

MCP Crew AI Server is a lightweight Python-based server designed to run, manage and create CrewAI workflows.

What is adam paterson mcp crew ai

MCP Crew AI Server

MCP Crew AI Server is a lightweight Python-based server designed to run, manage and create CrewAI workflows. This project leverages the Model Context Protocol (MCP) to communicate with Large Language Models (LLMs) and tools such as Claude Desktop or Cursor IDE, allowing you to orchestrate multi-agent workflows with ease.

Features

  • Automatic Configuration: Automatically loads agent and task configurations from two YAML files (agents.yml and tasks.yml), so you don't need to write custom code for basic setups.
  • Command Line Flexibility: Pass custom paths to your configuration files via command line arguments (--agents and --tasks).
  • Seamless Workflow Execution: Easily run pre-configured workflows through the MCP run_workflow tool.
  • Local Development: Run the server locally in STDIO mode, making it ideal for development and testing.

Installation

There are several ways to install the MCP Crew AI server:

Option 1: Install from PyPI (Recommended)

pip install mcp-crew-ai

Option 2: Install from GitHub

pip install git+https://github.com/adam-paterson/mcp-crew-ai.git

Option 3: Clone and Install

git clone https://github.com/adam-paterson/mcp-crew-ai.git
cd mcp-crew-ai
pip install -e .

Requirements

  • Python 3.11+
  • MCP SDK
  • CrewAI
  • PyYAML

Configuration

  • agents.yml: Define your agents with roles, goals, and backstories.
  • tasks.yml: Define tasks with descriptions, expected outputs, and assign them to agents.

Example agents.yml:

zookeeper:
  role: Zookeeper
  goal: Manage zoo operations
  backstory: >
    You are a seasoned zookeeper with a passion for wildlife conservation...

Example tasks.yml:

write_stories:
  description: >
    Write an engaging zoo update capturing the day's highlights.
  expected_output: 5 engaging stories
  agent: zookeeper
  output_file: zoo_report.md

Usage

Once installed, you can run the MCP CrewAI server using either of these methods:

Standard Python Command

mcp-crew-ai --agents path/to/agents.yml --tasks path/to/tasks.yml

Using UV Execution (uvx)

For a more streamlined experience, you can use the UV execution command:

uvx mcp-crew-ai --agents path/to/agents.yml --tasks path/to/tasks.yml

Or run just the server directly:

uvx mcp-crew-ai-server

This will start the server using default configuration from environment variables.

Command Line Options

  • --agents: Path to the agents YAML file (required)
  • --tasks: Path to the tasks YAML file (required)
  • --topic: The main topic for the crew to work on (default: "Artificial Intelligence")
  • --process: Process type to use (choices: "sequential" or "hierarchical", default: "sequential")
  • --verbose: Enable verbose output
  • --variables: JSON string or path to JSON file with additional variables to replace in YAML files
  • --version: Show version information and exit

Advanced Usage

You can also provide additional variables to be used in your YAML templates:

mcp-crew-ai --agents examples/agents.yml --tasks examples/tasks.yml --topic "Machine Learning" --variables '{"year": 2025, "focus": "deep learning"}'

These variables will replace placeholders in your YAML files. For example, {topic} will be replaced with "Machine Learning" and {year} with "2025".

Contributing

Contributions are welcome! Please open issues or submit pull requests with improvements, bug fixes, or new features.

Licence

This project is licensed under the MIT Licence. See the LICENSE file for details.

Happy workflow orchestration!

Leave a Comment

Frequently Asked Questions

What is MCP?

MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.

What are MCP Servers?

MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.

How do MCP Servers work?

MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.

Are MCP Servers secure?

Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.

Related MCP Servers

chrisdoc hevy mcp avatar

chrisdoc hevy mcp

mcp
sylphlab pdf reader mcp avatar

sylphlab pdf reader mcp

An MCP server built with Node.js/TypeScript that allows AI agents to securely read PDF files (local or URL) and extract text, metadata, or page counts. Uses pdf-parse.

pdf-parsetypescriptnodejs
aashari mcp server atlassian bitbucket avatar

aashari mcp server atlassian bitbucket

Node.js/TypeScript MCP server for Atlassian Bitbucket. Enables AI systems (LLMs) to interact with workspaces, repositories, and pull requests via tools (list, get, comment, search). Connects AI directly to version control workflows through the standard MCP interface.

atlassianrepositorymcp
aashari mcp server atlassian confluence avatar

aashari mcp server atlassian confluence

Node.js/TypeScript MCP server for Atlassian Confluence. Provides tools enabling AI systems (LLMs) to list/get spaces & pages (content formatted as Markdown) and search via CQL. Connects AI seamlessly to Confluence knowledge bases using the standard MCP interface.

atlassianmcpconfluence
prisma prisma avatar

prisma prisma

Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB

cockroachdbgomcp
Zzzccs123 mcp sentry avatar

Zzzccs123 mcp sentry

mcp sentry for typescript sdk

mcptypescript
zhuzhoulin dify mcp server avatar

zhuzhoulin dify mcp server

mcp
zhongmingyuan mcp my mac avatar

zhongmingyuan mcp my mac

mcp
zhixiaoqiang desktop image manager mcp avatar

zhixiaoqiang desktop image manager mcp

MCP 服务器,用于管理桌面图片、查看详情、压缩、移动等(完全让Trae实现)

mcp
zhixiaoqiang antd components mcp avatar

zhixiaoqiang antd components mcp

An MCP service for Ant Design components query | 一个减少 Ant Design 组件代码生成幻觉的 MCP 服务,包含系统提示词、组件文档、API 文档、代码示例和更新日志查询

designantdapi

Submit Your MCP Server

Share your MCP server with the community

Submit Now