An MCP for WireShark (tshark). Empower LLM's with realtime network traffic analysis capability
What is 0xKoda WireMCP
!Wire-MCP Banner
WireMCP
WireMCP is a Model Context Protocol (MCP) server designed to empower Large Language Models (LLMs) with real-time network traffic analysis capabilities. By leveraging tools built on top of Wireshark's tshark
, WireMCP captures and processes live network data, providing LLMs with structured context to assist in tasks like threat hunting, network diagnostics, and anomaly detection.
Features
WireMCP exposes the following tools to MCP clients, enhancing LLM understanding of network activity:
capture_packets
: Captures live traffic and returns raw packet data as JSON, enabling LLMs to analyze packet-level details (e.g., IP addresses, ports, HTTP methods).get_summary_stats
: Provides protocol hierarchy statistics, giving LLMs an overview of traffic composition (e.g., TCP vs. UDP usage).get_conversations
: Delivers TCP/UDP conversation statistics, allowing LLMs to track communication flows between endpoints.check_threats
: Captures IPs and checks them against the URLhaus blacklist, equipping LLMs with threat intelligence context for identifying malicious activity.check_ip_threats
: Performs targeted threat intelligence lookups for specific IP addresses against multiple threat feeds, providing detailed reputation and threat data.analyze_pcap
: Analyzes PCAP files to provide comprehensive packet data in JSON format, enabling detailed post-capture analysis of network traffic.extract_credentials
: Scans PCAP files for potential credentials from various protocols (HTTP Basic Auth, FTP, Telnet), aiding in security audits and forensic analysis.
How It Helps LLMs
WireMCP bridges the gap between raw network data and LLM comprehension by:
- Contextualizing Traffic: Converts live packet captures into structured outputs (JSON, stats) that LLMs can parse and reason about.
- Threat Detection: Integrates IOCs (currently URLhaus) to flag suspicious IPs, enhancing LLM-driven security analysis.
- Diagnostics: Offers detailed traffic insights, enabling LLMs to assist with troubleshooting or identifying anomalies.
- Narrative Generation: LLM's can Transform complex packet captures into coherent stories, making network analysis accessible to non-technical users.
Installation
Prerequisites
- Mac / Windows / Linux
- Wireshark (with
tshark
installed and accessible in PATH) - Node.js (v16+ recommended)
- npm (for dependency installation)
Setup
-
Clone the repository:
git clone https://github.com/0xkoda/WireMCP.git cd WireMCP
-
Install dependencies:
npm install
-
Run the MCP server:
node index.js
Note: Ensure
tshark
is in your PATH. WireMCP will auto-detect it or fall back to common install locations (e.g.,/Applications/Wireshark.app/Contents/MacOS/tshark
on macOS).
Usage with MCP Clients
WireMCP works with any MCP-compliant client. Below are examples for popular clients:
Example 1: Cursor
Edit mcp.json
in Cursor -> Settings -> MCP :
{
"mcpServers": {
"wiremcp": {
"command": "node",
"args": [
"/ABSOLUTE_PATH_TO/WireMCP/index.js"
]
}
}
}
Location (macOS): /Users/YOUR_USER/Library/Application Support/Claude/claude_desktop_config.json
Other Clients
This MCP will work well with any client. Use the command node /path/to/WireMCP/index.js
in their MCP server settings.
Example Output
Running check_threats
might yield:
Captured IPs:
174.67.0.227
52.196.136.253
Threat check against URLhaus blacklist:
No threats detected in URLhaus blacklist.
Running analyze_pcap
on a capture file:
{
"content": [{
"type": "text",
"text": "Analyzed PCAP: ./capture.pcap\n\nUnique IPs:\n192.168.0.2\n192.168.0.1\n\nProtocols:\neth:ethertype:ip:tcp\neth:ethertype:ip:tcp:telnet\n\nPacket Data:\n[{\"layers\":{\"frame.number\":[\"1\"],\"ip.src\":[\"192.168.0.2\"],\"ip.dst\":[\"192.168.0.1\"],\"tcp.srcport\":[\"1550\"],\"tcp.dstport\":[\"23\"]}}]"
}]
}
LLMs can use these outputs to:
- Provide natural language explanations of network activity
- Identify patterns and potential security concerns
- Offer context-aware recommendations
- Generate human-readable reports
Roadmap
- Expand IOC Providers: Currently uses URLhaus for threat checks. Future updates will integrate additional sources (e.g., IPsum, Emerging Threats) for broader coverage.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
License
MIT
Acknowledgments
- Wireshark/tshark team for their excellent packet analysis tools
- Model Context Protocol community for the framework and specifications
- URLhaus for providing threat intelligence data
Leave a Comment
Frequently Asked Questions
What is MCP?
MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.
What are MCP Servers?
MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.
How do MCP Servers work?
MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.
Are MCP Servers secure?
Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.
Related MCP Servers
chrisdoc hevy mcp
sylphlab pdf reader mcp
An MCP server built with Node.js/TypeScript that allows AI agents to securely read PDF files (local or URL) and extract text, metadata, or page counts. Uses pdf-parse.
aashari mcp server atlassian bitbucket
Node.js/TypeScript MCP server for Atlassian Bitbucket. Enables AI systems (LLMs) to interact with workspaces, repositories, and pull requests via tools (list, get, comment, search). Connects AI directly to version control workflows through the standard MCP interface.
aashari mcp server atlassian confluence
Node.js/TypeScript MCP server for Atlassian Confluence. Provides tools enabling AI systems (LLMs) to list/get spaces & pages (content formatted as Markdown) and search via CQL. Connects AI seamlessly to Confluence knowledge bases using the standard MCP interface.
prisma prisma
Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB
Zzzccs123 mcp sentry
mcp sentry for typescript sdk
zhuzhoulin dify mcp server
zhongmingyuan mcp my mac
zhixiaoqiang desktop image manager mcp
MCP 服务器,用于管理桌面图片、查看详情、压缩、移动等(完全让Trae实现)
zhixiaoqiang antd components mcp
An MCP service for Ant Design components query | 一个减少 Ant Design 组件代码生成幻觉的 MCP 服务,包含系统提示词、组件文档、API 文档、代码示例和更新日志查询
Submit Your MCP Server
Share your MCP server with the community
Submit Now