mem0-mcp

mem0-mcp avatar

by Dev-Khant

Community Servers

What is mem0-mcp

MCP Server with Mem0 for Managing Coding Preferences

This demonstrates a structured approach for using an MCP server with mem0 to manage coding preferences efficiently. The server can be used with Cursor and provides essential tools for storing, retrieving, and searching coding preferences.

Installation

  1. Clone this repository
  2. Initialize the uv environment:
uv venv
  1. Activate the virtual environment:
source .venv/bin/activate
  1. Install the dependencies using uv:
# Install in editable mode from pyproject.toml
uv pip install -e .
  1. Update .env file in the root directory with your mem0 API key:
MEM0_API_KEY=your_api_key_here

Usage

  1. Start the MCP server:
uv run main.py
  1. In Cursor, connect to the SSE endpoint, follow this doc for reference:
http://0.0.0.0:8080/sse
  1. Open the Composer in Cursor and switch to Agent mode.

Demo with Cursor

https://github.com/user-attachments/assets/56670550-fb11-4850-9905-692d3496231c

Features

The server provides three main tools for managing code preferences:

  1. add_coding_preference: Store code snippets, implementation details, and coding patterns with comprehensive context including:

    • Complete code with dependencies
    • Language/framework versions
    • Setup instructions
    • Documentation and comments
    • Example usage
    • Best practices
  2. get_all_coding_preferences: Retrieve all stored coding preferences to analyze patterns, review implementations, and ensure no relevant information is missed.

  3. search_coding_preferences: Semantically search through stored coding preferences to find relevant:

    • Code implementations
    • Programming solutions
    • Best practices
    • Setup guides
    • Technical documentation

Why?

This implementation allows for a persistent coding preferences system that can be accessed via MCP. The SSE-based server can run as a process that agents connect to, use, and disconnect from whenever needed. This pattern fits well with "cloud-native" use cases where the server and clients can be decoupled processes on different nodes.

Server

By default, the server runs on 0.0.0.0:8080 but is configurable with command line arguments like:

uv run main.py --host <your host> --port <your port>

The server exposes an SSE endpoint at /sse that MCP clients can connect to for accessing the coding preferences management tools.

Leave a Comment

Comments section will be available soon. Stay tuned!

Frequently Asked Questions

What is MCP?

MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.

What are MCP Servers?

MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.

How do MCP Servers work?

MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.

Are MCP Servers secure?

Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.