mcp-server-bigquery

mcp-server-bigquery avatar

by LucasHild

Community Servers

A Model Context Protocol server that provides access to BigQuery

What is mcp-server-bigquery

BigQuery MCP server

smithery badge

A Model Context Protocol server that provides access to BigQuery. This server enables LLMs to inspect database schemas and execute queries.

Components

Tools

The server implements one tool:

  • execute-query: Executes a SQL query using BigQuery dialect
  • list-tables: Lists all tables in the BigQuery database
  • describe-table: Describes the schema of a specific table

Configuration

The server can be configured with the following arguments:

  • --project (required): The GCP project ID.
  • --location (required): The GCP location (e.g. europe-west9).
  • --dataset (optional): Only take specific BigQuery datasets into consideration. Several datasets can be specified by repeating the argument (e.g. --dataset my_dataset_1 --dataset my_dataset_2). If not provided, all datasets in the project will be considered.

Quickstart

Install

Installing via Smithery

To install BigQuery Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install mcp-server-bigquery --client claude

Claude Desktop

On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json On Windows: %APPDATA%/Claude/claude_desktop_config.json

Development/Unpublished Servers Configuration
"mcpServers": {
  "bigquery": {
    "command": "uv",
    "args": [
      "--directory",
      "{{PATH_TO_REPO}}",
      "run",
      "mcp-server-bigquery",
      "--project",
      "{{GCP_PROJECT_ID}}",
      "--location",
      "{{GCP_LOCATION}}"
    ]
  }
}
Published Servers Configuration
"mcpServers": {
  "bigquery": {
    "command": "uvx",
    "args": [
      "mcp-server-bigquery",
      "--project",
      "{{GCP_PROJECT_ID}}",
      "--location",
      "{{GCP_LOCATION}}"
    ]
  }
}

Replace {{PATH_TO_REPO}}, {{GCP_PROJECT_ID}}, and {{GCP_LOCATION}} with the appropriate values.

Development

Building and Publishing

To prepare the package for distribution:

  1. Sync dependencies and update lockfile:
uv sync
  1. Build package distributions:
uv build

This will create source and wheel distributions in the dist/ directory.

  1. Publish to PyPI:
uv publish

Note: You'll need to set PyPI credentials via environment variables or command flags:

  • Token: --token or UV_PUBLISH_TOKEN
  • Or username/password: --username/UV_PUBLISH_USERNAME and --password/UV_PUBLISH_PASSWORD

Debugging

Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.

You can launch the MCP Inspector via npm with this command:

npx @modelcontextprotocol/inspector uv --directory {{PATH_TO_REPO}} run mcp-server-bigquery

Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

Leave a Comment

Comments section will be available soon. Stay tuned!

Frequently Asked Questions

What is MCP?

MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.

What are MCP Servers?

MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.

How do MCP Servers work?

MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.

Are MCP Servers secure?

Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.