Lara Translate MCP Server
by CristianBelli01k
What is Lara Translate MCP Server
Lara Translate MCP Server
A Model Context Protocol (MCP) Server for Lara Translate API, enabling powerful translation capabilities with support for language detection, context-aware translations and translation memories.
π Table of Contents
- π Introduction
- π Available Tools
- π Getting Started
- π Requirements
- π Installation
- π§© Installation Engines
- π» Popular Clients that supports MCPs
- π Support
π Introduction
Model Context Protocol (MCP) is an open standardized communication protocol that enables AI applications to connect with external tools, data sources, and services. Think of MCP like a USB-C port for AI applications - just as USB-C provides a standardized way to connect devices to various peripherals, MCP provides a standardized way to connect AI models to different data sources and tools.
Lara Translate MCP Server enables AI applications to access Lara Translate's powerful translation capabilities through this standardized protocol.
More info about Model Context Protocol on: https://modelcontextprotocol.io/
Lara Translate MCP Server implements the Model Context Protocol to provide seamless translation capabilities to AI applications. The integration follows this flow:
- Connection Establishment: When an MCP-compatible AI application starts, it connects to configured MCP servers, including the Lara Translate MCP Server
- Tool & Resource Discovery: The AI application discovers available translation tools and resources provided by the Lara Translate MCP Server
- Request Processing: When translation needs are identified:
- The AI application formats a structured request with text to translate, language pairs, and optional context
- The MCP server validates the request and transforms it into Lara Translate API calls
- The request is securely sent to Lara Translate's API using your credentials
- Translation & Response: Lara Translate processes the translation using advanced AI models
- Result Integration: The translation results are returned to the AI application, which can then incorporate them into its response
This integration architecture allows AI applications to access professional-grade translations without implementing the API directly, while maintaining the security of your API credentials and offering flexibility to adjust translation parameters through natural language instructions.
Integrating Lara with LLMs creates a powerful synergy that significantly enhances translation quality for non-English languages.
Why General LLMs Fall Short in Translation
While large language models possess broad linguistic capabilities, they often lack the specialized expertise and up-to-date terminology required for accurate translations in specific domains and languages.
Laraβs Domain-Specific Advantage
Lara overcomes this limitation by leveraging Translation Language Models (T-LMs) trained on billions of professionally translated segments. These models provide domain-specific machine translation that captures cultural nuances and industry terminology that generic LLMs may miss. The result: translations that are contextually accurate and sound natural to native speakers.
Designed for Non-English Strength
Lara has a strong focus on non-English languages, addressing the performance gap found in models such as GPT-4. The dominance of English in datasets such as Common Crawl and Wikipedia results in lower quality output in other languages. Lara helps close this gap by providing higher quality understanding, generation, and restructuring in a multilingual context.
Faster, Smarter Multilingual Performance
By offloading complex translation tasks to specialized T-LMs, Lara reduces computational overhead and minimizes latencyβa common issue for LLMs handling non-English input. Its architecture processes translations in parallel with the LLM, enabling for real-time, high-quality output without compromising speed or efficiency.
Cost-Efficient Translation at Scale
Lara also lowers the cost of using models like GPT-4 in non-English workflows. Since tokenization (and pricing) is optimized for English, using Lara allows translation to take place before hitting the LLM, meaning that only the translated English content is processed. This improves cost efficiency and supports competitive scalability for global enterprises.
π Available Tools
Translation Tools
Inputs:
text
(array): An array of text blocks to translate, each with:text
(string): The text contenttranslatable
(boolean): Whether this block should be translated
source
(optional string): Source language code (e.g., 'en-EN')target
(string): Target language code (e.g., 'it-IT')context
(optional string): Additional context to improve translation qualityinstructions
(optional string[]): Instructions to adjust translation behaviorsource_hint
(optional string): Guidance for language detection
Returns: Translated text blocks maintaining the original structure
Translation Memories Tools
Returns: Array of memories and their details
Inputs:
name
(string): Name of the new memoryexternal_id
(optional string): ID of the memory to import from MyMemory (e.g., 'ext_my_[MyMemory ID]')
Returns: Created memory data
Inputs:
id
(string): ID of the memory to updatename
(string): The new name for the memory
Returns: Updated memory data
Inputs:
id
(string): ID of the memory to delete
Returns: Deleted memory data
Inputs:
id
(string | string[]): ID or IDs of memories where to add the translation unitsource
(string): Source language codetarget
(string): Target language codesentence
(string): The source sentencetranslation
(string): The translated sentencetuid
(optional string): Translation Unit unique identifiersentence_before
(optional string): Context sentence beforesentence_after
(optional string): Context sentence after
Returns: Added translation details
Inputs:
id
(string): ID of the memorysource
(string): Source language codetarget
(string): Target language codesentence
(string): The source sentencetranslation
(string): The translated sentencetuid
(optional string): Translation Unit unique identifiersentence_before
(optional string): Context sentence beforesentence_after
(optional string): Context sentence after
Returns: Removed translation details
Inputs:
id
(string): ID of the memory to updatetmx
(file path): The path of the TMX file to uploadgzip
(boolean): Indicates if the file is compressed (.gz)
Returns: Import details
Inputs:
id
(string): The ID of the import job
Returns: Import details
π Getting Started
π Requirements
- Lara Translate API Credentials
- To get them you can refer to the Official Documentation
- An LLM client that supports Model Context Protocol (MCP), such as Claude Desktop, Cursors, or GitHub Copilot
- NPX or Docker (depending on your preferred installation method)
π Installation
Introduction
The installation process is standardized across all MCP clients. It involves manually adding a configuration object to your client's MCP configuration JSON file.
If you're unsure how to configure an MCP with your client, please refer to your MCP client's official documentation.
Lara Translate MCP supports multiple installation methods, including NPX and Docker.
Below, we'll use NPX as an example.
Installation & Configuration
Step 1: Open your client's MCP configuration JSON file with a text editor, then copy and paste the following snippet:
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": [
"-y",
"@translated/lara-mcp"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
Step 2: Replace <YOUR_ACCESS_KEY_ID>
and <YOUR_ACCESS_KEY_SECRET>
with your Lara Translate API credentials (refer to the Official Documentation for details).
Step 3: Restart your MCP client.
Verify Installation
After restarting your MCP client, you should see Lara Translate MCP in the list of available MCPs.
The method for viewing installed MCPs varies by client. Please consult your MCP client's documentation.
To verify that Lara Translate MCP is working correctly, try translating with a simple prompt:
Translate with Lara "Hello world" to Spanish
Your MCP client will begin generating a response. If Lara Translate MCP is properly installed and configured, your client will either request approval for the action or display a notification that Lara Translate is being used.
π§© Installation Engines
This option requires Node.js to be installed on your system.
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": ["-y", "@translated/lara-mcp"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
This option requires Docker to be installed on your system.
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"translatednet/lara-mcp:latest"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
Using Node.js
- Clone the repository:
git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
- Install dependencies and build:
# Install dependencies
pnpm install
# Build
pnpm run build
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "node",
"args": ["<FULL_PATH_TO_PROJECT_FOLDER>/dist/index.js"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace:
<FULL_PATH_TO_PROJECT_FOLDER>
with the absolute path to your project folder<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
Building a Docker Image
- Clone the repository:
git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
- Build the Docker image:
docker build -t lara-mcp .
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"lara-mcp"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual credentials.
π» Popular Clients that supports MCPs
For a complete list of MCP clients and their feature support, visit the official MCP clients page.
Client | Description |
---|---|
Claude Desktop | Desktop application for Claude AI |
Cursor | AI-first code editor |
Cline for VS Code | VS Code extension for AI assistance |
GitHub Copilot MCP | VS Code extension for GitHub Copilot MCP integration |
Windsurf | AI-powered code editor and development environment |
π Support
- For issues with Lara Translate API: Contact Lara Support
- For issues with this MCP Server: Open an issue on GitHub
Leave a Comment
Comments section will be available soon. Stay tuned!
Frequently Asked Questions
What is MCP?
MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.
What are MCP Servers?
MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.
How do MCP Servers work?
MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.
Are MCP Servers secure?
Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.
Related MCP Servers
21st.dev Magic AI Agent
It's like v0 but in your Cursor/WindSurf/Cline. 21st dev Magic MCP server for working with your frontend like Magic
Requirements:
A Model Context Protocol Server for connecting with Adfin APIs
AgentQL MCP Server
Model Context Protocol server that integrates AgentQL's data extraction capabilities.
AgentRPC
A universal RPC layer for AI agents. Connect to any function, any language, any framework, in minutes.
Aiven MCP Server
Model Context Protocol server for Aiven
IoTDB MCP Server
Apache IoTDB MCP Server
Apify Model Context Protocol (MCP) Server
Model Context Protocol (MCP) Server for Apify's Actors
APIMatic Validator MCP Server
APIMatic Validator MCP Server for validating OpenAPI specs via APIMatic's API with MCP
π Audiense Insights MCP Server
Audiense Insights MCP Server is a server based on the Model Context Protocol (MCP) that allows Claude and other MCP-compatible clients to interact with your Audiense Insights account
Bankless Onchain MCP Server
Bringing the bankless onchain API to MCP
Submit Your MCP Server
Share your MCP server with the community
Submit Now