Azure Data Explorer MCP Server
by pab1it0
A Model Context Protocol (MCP) server that enables AI assistants to query and analyze Azure Data Explorer databases through standardized interfaces.
What is Azure Data Explorer MCP Server
Azure Data Explorer MCP Server
A Model Context Protocol (MCP) server for Azure Data Explorer.
This provides access to your Azure Data Explorer clusters and databases through standardized MCP interfaces, allowing AI assistants to execute KQL queries and explore your data.
Features
-
Execute KQL queries against Azure Data Explorer
-
Discover and explore database resources
- List tables in the configured database
- View table schemas
- Sample data from tables
-
Authentication support
- Token credential support (Azure CLI, MSI, etc.)
-
Docker containerization support
-
Provide interactive tools for AI assistants
The list of tools is configurable, so you can choose which tools you want to make available to the MCP client. This is useful if you don't use certain functionality or if you don't want to take up too much of the context window.
Usage
-
Login to your Azure account which has the permission to the ADX cluster using Azure CLI.
-
Configure the environment variables for your ADX cluster, either through a
.env
file or system environment variables:
# Required: Azure Data Explorer configuration
ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net
ADX_DATABASE=your_database
- Add the server configuration to your client configuration file. For example, for Claude Desktop:
{
"mcpServers": {
"adx": {
"command": "uv",
"args": [
"--directory",
"<full path to adx-mcp-server directory>",
"run",
"src/adx_mcp_server/main.py"
],
"env": {
"ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net",
"ADX_DATABASE": "your_database"
}
}
}
}
Note: if you see
Error: spawn uv ENOENT
in Claude Desktop, you may need to specify the full path touv
or set the environment variableNO_UV=1
in the configuration.
Docker Usage
This project includes Docker support for easy deployment and isolation.
Building the Docker Image
Build the Docker image using:
docker build -t adx-mcp-server .
Running with Docker
You can run the server using Docker in several ways:
Using docker run directly:
docker run -it --rm \
-e ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net \
-e ADX_DATABASE=your_database \
adx-mcp-server
Using docker-compose:
Create a .env
file with your Azure Data Explorer credentials and then run:
docker-compose up
Running with Docker in Claude Desktop
To use the containerized server with Claude Desktop, update the configuration to use Docker with the environment variables:
{
"mcpServers": {
"adx": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "ADX_CLUSTER_URL",
"-e", "ADX_DATABASE",
"adx-mcp-server"
],
"env": {
"ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net",
"ADX_DATABASE": "your_database"
}
}
}
}
This configuration passes the environment variables from Claude Desktop to the Docker container by using the -e
flag with just the variable name, and providing the actual values in the env
object.
Development
Contributions are welcome! Please open an issue or submit a pull request if you have any suggestions or improvements.
This project uses uv
to manage dependencies. Install uv
following the instructions for your platform:
curl -LsSf https://astral.sh/uv/install.sh | sh
You can then create a virtual environment and install the dependencies with:
uv venv
source .venv/bin/activate # On Unix/macOS
.venv\Scripts\activate # On Windows
uv pip install -e .
Project Structure
The project has been organized with a src
directory structure:
adx-mcp-server/
โโโ src/
โ โโโ adx_mcp_server/
โ โโโ __init__.py # Package initialization
โ โโโ server.py # MCP server implementation
โ โโโ main.py # Main application logic
โโโ Dockerfile # Docker configuration
โโโ docker-compose.yml # Docker Compose configuration
โโโ .dockerignore # Docker ignore file
โโโ pyproject.toml # Project configuration
โโโ README.md # This file
Testing
The project includes a comprehensive test suite that ensures functionality and helps prevent regressions.
Run the tests with pytest:
# Install development dependencies
uv pip install -e ".[dev]"
# Run the tests
pytest
# Run with coverage report
pytest --cov=src --cov-report=term-missing
Tests are organized into:
- Configuration validation tests
- Server functionality tests
- Error handling tests
- Main application tests
When adding new features, please also add corresponding tests.
Tools
Tool | Category | Description |
---|---|---|
execute_query |
Query | Execute a KQL query against Azure Data Explorer |
list_tables |
Discovery | List all tables in the configured database |
get_table_schema |
Discovery | Get the schema for a specific table |
sample_table_data |
Discovery | Get sample data from a table with optional sample size |
License
MIT
Leave a Comment
Comments section will be available soon. Stay tuned!
Frequently Asked Questions
What is MCP?
MCP (Model Context Protocol) is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications, providing a standardized way to connect AI models to different data sources and tools.
What are MCP Servers?
MCP Servers are lightweight programs that expose specific capabilities through the standardized Model Context Protocol. They act as bridges between LLMs like Claude and various data sources or services, allowing secure access to files, databases, APIs, and other resources.
How do MCP Servers work?
MCP Servers follow a client-server architecture where a host application (like Claude Desktop) connects to multiple servers. Each server provides specific functionality through standardized endpoints and protocols, enabling Claude to access data and perform actions through the standardized protocol.
Are MCP Servers secure?
Yes, MCP Servers are designed with security in mind. They run locally with explicit configuration and permissions, require user approval for actions, and include built-in security features to prevent unauthorized access and ensure data privacy.
Related MCP Servers
Ableton Live MCP Server
MCP Server implementation for Ableton Live OSC control
Airbnb MCP Server
AI Agent Marketplace Index Search MCP Server
MCP Server for AI Agent Marketplace Index from DeepNLP
Algorand MCP Implementation
Algorand Model Context Protocol (Server & Client)
mcp-server-apache-airflow
pypi.org/project/mcp-server-apache-airflow/
airtable-mcp-server
๐๏ธ๐ค Airtable Model Context Protocol Server, for allowing AI systems to interact with your Airtable bases
Airtable MCP Server
Search, create and update Airtable bases, tables, fields, and records using Claude Desktop and MCP (Model Context Protocol) clients
Alphavantage MCP Server
A MCP server for the stock market data API, Alphavantage API.
Amadeus MCP Server
Amadeus MCP(Model Context Protocol) Server
Anki MCP Server
An MCP server for Anki
Submit Your MCP Server
Share your MCP server with the community
Submit Now